Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
2.
Foods ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611286

RESUMO

Rumexpatientia L. ×Rumextianshanicus A. Los (RRL), known as "protein grass" in China, was recognized as a new food ingredient in 2021. However, the cultivation and product development of RRL are still at an early stage, and no peptide research has been reported. In this study, two novel antioxidant peptides, LKPPF and LPFRP, were purified and identified from RRL and applied to H2O2-induced HepG2 cells to investigate their antioxidant properties. It was shown that 121 peptides were identified by ultrafiltration, gel filtration chromatography, and LC-MS/MS, while computer simulation and molecular docking indicated that LKPPF and LPFRP may have strong antioxidant properties. Both peptides were not cytotoxic to HepG2 cells at low concentrations and promoted cell growth, which effectively reduced the production of intracellular ROS and MDA, and increased cell viability and the enzymatic activities of SOD, GSH-Px, and CAT. Therefore, LKPPF and LPFRP, two peptides, possess strong antioxidant activity, which provides a theoretical basis for their potential as food additives or functional food supplements, but still need to be further investigated through animal models as well as cellular pathways.

3.
Glob Chang Biol ; 30(4): e17281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619550

RESUMO

The ongoing climate change on the Tibetan Plateau, leading to warming and precipitation anomalies, modifies phosphorus (P) cycling in alpine meadow soils. However, the interactions and cascading effects of warming and precipitation changes on the key "extracellular" and "intracellular" P cycling genes (PCGs) of bacteria are largely unknown for these P-limited ecosystems. We used metagenomics to analyze the individual and combined effects of warming and altered precipitation on soil PCGs and P transformation in a manipulation experiment. Warming and increased precipitation raised Olsen-P (bioavailable P, AP) by 13% and 20%, respectively, mainly caused by augmented hydrolysis of organic P compounds (NaOH-Po). The decreased precipitation reduced soil AP by 5.3%. The richness and abundance of the PCGs' community in soils on the cold Tibetan plateau were more sensitive to warming than altered precipitation. The abundance of PCGs and P cycling processes decreased under the influence of individual climate change factors (i.e., warming and altered precipitation alone), except for the warming combined with increased precipitation. Pyruvate metabolism, phosphotransferase system, oxidative phosphorylation, and purine metabolism (all "intracellular" PCG) were closely correlated with P pools under climate change conditions. Specifically, warming recruited bacteria with the phoD and phoX genes, which encode enzymes responsible for phosphoester hydrolysis (extracellular P cycling), strongly accelerated organic P mineralization and so, directly impacted P bioavailability in alpine soil. The interactions between warming and altered precipitation profoundly influenced the PCGs' community and facilitated microbial adaptation to these environmental changes. Warming combined with increased precipitation compensated for the detrimental impacts of the individual climate change factors on PCGs. In conclusion, warming combined with rising precipitation has boosting effect on most P-related functions, leading to the acceleration of P cycling within microbial cells and extracellularly, including mineralization and more available P release for microorganisms and plants in alpine soils.


Assuntos
Ecossistema , Solo , Humanos , Disponibilidade Biológica , Mudança Climática , Fósforo
4.
Opt Lett ; 49(8): 2157-2160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621100

RESUMO

Significantly increased interests have been witnessed for the 2 µm waveband which is considered to be a promising alternative window for fiber and free-space optical communications. However, the less mature device technology at this wavelength range is one of the primary obstacles toward practical applications. In this work, we demonstrate an efficient and high-speed silicon modulator based on carrier depletion in a coupling tunable resonator. A benchmark high modulation efficiency of 0.75 V·cm is achieved. The 3-dB electro-optic bandwidth is measured to be 26 GHz allowing for up to 34 Gbit/s on-off keying modulation with a low energy consumption of ∼0.24 pJ/bit. It provides a solution for the silicon modulator with high-speed and low power consumption in the 2-µm waveband.

5.
Mol Neurobiol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649659

RESUMO

Stroke is a life-threatening condition that impairs the arteries and causes neurological impairment. The incidence of stroke is increasing year by year with the arrival of the aging population. Thus, there is an urgent need for early stroke diagnosis. Short-chain fatty acids (SCFAs) can modulate the central nervous system and directly and indirectly impact behavioral and cognitive functions. This study aimed to investigate the connection between SCFA metabolism and stroke development via bioinformatic analysis. Initially, the Gene Set Enrichment Analysis (GSEA) and immune cell infiltration analysis were performed based on RNA data from stroke patients to comprehend the mechanisms governing stroke pathogenesis. The functional analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI), was performed based on the Differentially Expressed Gene (DEG) selected by the limma package. 1220 SCFA metabolism-related genes screened from Genecards databases were intersected with 242 genes in main modules determined by Weighted Gene Co-Expression Network Analysis (WGCNA), and the final 10 SCFA key genes were obtained. GO analysis revealed that these genes were involved in immune response processes. Through lasso regression analyses, we established a stroke early diagnosis model and selected 6 genes with diagnostic value. The genes were validated by the area under curve (AUC) values and had a relatively good diagnostic performance. Finally, 4 potential therapeutic drugs targeting these genes were predicted using the Drug Signatures Database (DSigDB) via Enrichr. In conclusion, this paper analyzes the involvement of SCFAs in the complex gut-brain axis mechanism, which contributes to developing new targets for treating central nervous system diseases and provides new ideas for early ischemic stroke diagnosis.

6.
J Imaging Inform Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627269

RESUMO

Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the diverse algorithms currently available? The objective of our study is to develop DWI radiomic models based on different machine learning algorithms and identify the optimal prediction model. We undertook a retrospective analysis of the DWI data of 77 patients with IMCC confirmed by pathological testing. Fifty-seven patients initially included in the study were randomly assigned to either the training set or the validation set in a ratio of 7:3. We established four different classifier models, namely random forest (RF), support vector machines (SVM), logistic regression (LR), and gradient boosting decision tree (GBDT), by manually contouring the region of interest and extracting prominent radiomic features. An external validation of the model was performed with the DWI data of 20 patients with IMCC who were subsequently included in the study. The area under the receiver operating curve (AUC), accuracy (ACC), precision (PRE), sensitivity (REC), and F1 score were used to evaluate the diagnostic performance of the model. Following the process of feature selection, a total of nine features were retained, with skewness being the most crucial radiomic feature demonstrating the highest diagnostic performance, followed by Gray Level Co-occurrence Matrix lmc1 (glcm-lmc1) and kurtosis, whose diagnostic performances were slightly inferior to skewness. Skewness and kurtosis showed a negative correlation with the pathological grading of IMCC, while glcm-lmc1 exhibited a positive correlation with the IMCC pathological grade. Compared with the other three models, the SVM radiomic model had the best diagnostic performance with an AUC of 0.957, an accuracy of 88.2%, a sensitivity of 85.7%, a precision of 85.7%, and an F1 score of 85.7% in the training set, as well as an AUC of 0.829, an accuracy of 76.5%, a sensitivity of 71.4%, a precision of 71.4%, and an F1 score of 71.4% in the external validation set. The DWI-based radiomic model proved to be efficacious in predicting the pathological grade of IMCC. The model with the SVM classifier algorithm had the best prediction efficiency and robustness. Consequently, this SVM-based model can be further explored as an option for a non-invasive preoperative prediction method in clinical practice.

7.
Regen Ther ; 27: 244-250, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38586873

RESUMO

Platelet-rich plasma (PRP) has the capability of assisting in the recovery of damaged tissues by releasing a variety of biologically active factors to initiate a hemostatic cascade reaction and promote the synthesis of new connective tissue and revascularization. It is now widely used for tissue engineering repair. In addition, PRP has demonstrated nerve repair and pain relief, and has been studied and applied to the facial nerve, median nerve, sciatic nerve, and central nerve. These suggest that PRP injection therapy has a positive effect on nerve repair. This indicates that PRP has high clinical value and potential application in nerve repair. It is worthwhile for scientists and medical workers to further explore and study PRP to expand its application in nerve repair, and to provide a more reliable scientific basis for the opening of a new approach to nerve repair.

8.
Evol Lett ; 8(2): 253-266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525025

RESUMO

While temperature has been shown to affect the survival and growth of bacteria and their phage parasites, it is unclear if trade-offs between phage resistance and other bacterial traits depend on the temperature. Here, we experimentally compared the evolution of phage resistance-virulence trade-offs and underlying molecular mechanisms in phytopathogenic Ralstonia solanacearum bacterium at 25 °C and 35 °C temperature environments. We found that while phages reduced R. solanacearum densities relatively more at 25 °C, no difference in the final level of phage resistance was observed between temperature treatments. Instead, small colony variants (SCVs) with increased growth rate and mutations in the quorum-sensing (QS) signaling receptor gene, phcS, evolved in both temperature treatments. Interestingly, SCVs were also phage-resistant and reached higher frequencies in the presence of phages. Evolving phage resistance was costly, resulting in reduced carrying capacity, biofilm formation, and virulence in planta, possibly due to loss of QS-mediated expression of key virulence genes. We also observed mucoid phage-resistant colonies that showed loss of virulence and reduced twitching motility likely due to parallel mutations in prepilin peptidase gene, pilD. Moreover, phage-resistant SCVs from 35 °C-phage treatment had parallel mutations in type II secretion system (T2SS) genes (gspE and gspF). Adsorption assays confirmed the role of pilD as a phage receptor, while no loss of adsorption was found with phcS or T2SS mutants, indicative of other downstream phage resistance mechanisms. Additional transcriptomic analysis revealed upregulation of CBASS and type I restriction-modification phage defense systems in response to phage exposure, which coincided with reduced expression of motility and virulence-associated genes, including pilD and type II and III secretion systems. Together, these results suggest that while phage resistance-virulence trade-offs are not affected by the growth temperature, they could be mediated through both pre- and postinfection phage resistance mechanisms.

9.
Front Oncol ; 14: 1280075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525423

RESUMO

Background: Due to the widespread use of imaging techniques, the detection rate of early-stage lung cancer has increased. Video-assisted thoracoscopic surgery (VATS) sublobectomy has emerged as a prominent alternative to lobectomy, offering advantages like reduced resection range, better preservation of lung function, and enhanced postoperative quality of life. However, sublobectomy is more intricate than lobectomy, necessitating a higher level of surgical proficiency and anatomical understanding. Methods: Three electronic databases were searched to capture relevant studies from January 2016 to March 2023, which related to the application of three-dimensional(3D) technology in VATS sublobectomy. Results: Currently, clinical departments such as orthopedics, hepatobiliary surgery, and urology have started using 3D technology. This technology is expected to be widely used in thoracic surgery in future. Now 3D technology assists in preoperative planning, intraoperative navigation and doctor-patient communication. Conclusion: 3D technologies, instrumental in locating pulmonary nodules and identifying variations in target lung segmental vessels and bronchi, play pivotal roles in VATS sublobectomy, especially in preoperative planning, intraoperative navigation, and doctor-patient communication. The limitations of 3D technology in clinical application are analyzed, and the future direction of existing 3D technology development is prospected.

10.
Plants (Basel) ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38498476

RESUMO

Flower development, as the basis for plant seed development, is principally conserved in angiosperms. At present, a number of genes regulating flower organ differentiation have been identified, and an ABCDE model has also been proposed. In contrast, the mechanism that regulates the development of the sterile lemma remains unclear. In this study, we identified and characterized a rice floral organ mutant, M15, in which the sterile lemma transformed into a lemma-like organ. Positional cloning combined with a complementary experiment demonstrated that the mutant phenotype was restored by LONG STERILE LEMMA1/(G1). G1 was expressed constitutively in various tissues, with the highest expression levels detected in the sterile lemma and young panicle. G1 is a nucleus-localized protein and functions as a homomer. Biochemical assays showed that G1 physically interacted with OsMADS1 both in vitro and in vivo. Interestingly, the expression of G1 in M15 decreased, while the expression level of OsMADS1 increased compared with the wild type. We demonstrate that G1 plays a key role in sterile lemma development through cooperating with OsMADS1. The above results have implications for further research on the molecular mechanisms underlying flower development and may have potential applications in crop improvement strategies.

11.
Lancet Reg Health Am ; 32: 100709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38510791

RESUMO

Background: As overdoses continue to increase worldwide, accurate estimates are needed to understand the size of the population at risk and address health disparities. Capture-recapture methods may be used in place of direct estimation at nearly any geographic level (e.g., city, state, country) to estimate the size of the population with opioid use disorder (OUD). We performed a multi-sample capture-recapture analysis with persons aged 18-64 years to estimate the prevalence of OUD in Massachusetts from 2014 to 2020, stratified by sex and race/ethnicity. Methods: We used seven statewide administrative data sources linked at the individual level. We developed log-linear models to estimate the unknown OUD-affected population. Uncertainty was characterized using 95% confidence intervals (95% CI) on the total counts and prevalence estimates. Findings: The estimated OUD prevalence increased from 5.47% (95% CI = 4.89%, 5.98%) in 2014 to 5.79% (95% CI = 5.34%, 6.19%) in 2020. Prevalence among Hispanic females doubled (2.46% in 2014 to 4.23% in 2020) and prevalence rose to nearly 10% among Black non-Hispanic males and Hispanic males from 2014 through 2019. Estimates for Black non-Hispanic females more than doubled from 2014 through 2019 (3.39% to 7.09%), and then decreased to 5.69% in 2020. Interpretation: This study is the first to provide OUD prevalence trend estimates by binary sex and race/ethnicity at a state level using capture-recapture methods. Using these methods as the international overdose crisis worsens can allow jurisdictions to appropriately allocate resources and targeted interventions to marginalised populations. Funding: NIDA.

12.
J Stroke Cerebrovasc Dis ; 33(6): 107689, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38527567

RESUMO

OBJECTIVES: Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS: This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS: The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-ß), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION: This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.

13.
Purinergic Signal ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489005

RESUMO

Berberine (BBR) is a Chinese herb with antioxidant and anti-inflammatory properties. In a previous study, we found that BBR had a protective effect against light-induced retinal degeneration in BALB/c mice. The purinergic P2X7 receptor (P2X7R) plays a key role in retinal degeneration via inducing oxidative stress, inflammatory changes, and cell death. The aim of this study was to investigate whether BBR can induce protective effects in light damage experiments and whether P2X7R can get involved in these effects. C57BL/6 J mice and P2X7 knockout (KO) mice on the C57BL/6 J background were used. We found that BBR preserved the outer nuclear layer (ONL) thickness and retinal ganglion cells following light stimulation. Furthermore, BBR significantly suppressed photoreceptor apoptosis, pro-apoptotic c-fos expression, pro-inflammatory responses of Mϋller cells, and inflammatory factors (TNF-α, IL-1ß). In addition, protein levels of P2X7R were downregulated in BBR-treated mice. Double immunofluorescence showed that BBR reduced overexpression of P2X7R in retinal ganglion cells and Mϋller cells. Furthermore, BBR combined with the P2X7R agonist BzATP blocked the effects of BBR on retinal morphology and photoreceptor apoptosis. However, in P2X7 KO mice, BBR had an additive effect resulting in thicker ONL and more photoreceptors. The data suggest that the P2X7 receptor is involved in retinal light damage, and BBR inhibits this process by reducing histological impairment, cell death, and inflammatory responses.

14.
Neuropharmacology ; 251: 109929, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521230

RESUMO

The incidence of ischemic stroke is increasing year by year and showing a younger trend. Impaired blood-brain barrier (BBB) is one of the pathological manifestations caused by cerebral ischemia, leading to poor prognosis of patients. Accumulating evidence indicates that ferroptosis is involved in cerebral ischemia/reperfusion injury (CIRI). We have previously demonstrated that Ginsenoside Rd (G-Rd) protects against CIRI-induced neuronal injury. However, whether G-Rd can attenuate CIRI-induced disruption of the BBB remains unclear. In this study, we found that G-Rd could upregulate the levels of ZO-1, occludin, and claudin-5 in ipsilateral cerebral microvessels and bEnd.3 cells, reduce endothelial cells (ECs) loss and Evans blue (EB) leakage, and ultimately improve BBB integrity after CIRI. Interestingly, the expressions of ACSL4 and COX2 were upregulated, the expressions of GPX4 and xCT were downregulated, the levels of GSH was decreased, and the levels of MDA and Fe2+ were increased in ischemic tissues and bEnd.3 cells after CIRI, suggesting that ECs ferroptosis occurred after CIRI. However, G-Rd can alleviate CIRI-induced BBB disruption by inhibiting ECs ferroptosis. Mechanistically, G-Rd prevented tight junction loss and BBB leakage by upregulating NRG1, activating its tyrosine kinase ErbB4 receptor, and then activating downstream PI3K/Akt/mTOR signaling, thereby inhibiting CIRI-induced ferroptosis in ECs. Taken together, these data provides data support for G-Rd as a promising therapeutic drug for cerebral ischemia.


Assuntos
Isquemia Encefálica , Ferroptose , Ginsenosídeos , Neuregulina-1 , Traumatismo por Reperfusão , Ratos , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Infarto Cerebral , Isquemia Encefálica/metabolismo , Transdução de Sinais , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
15.
J Stroke Cerebrovasc Dis ; 33(5): 107647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431112

RESUMO

BACKGROUND: High-risk stroke patients are recommended to receive high-intensity statin therapy to reduce the risk of stroke recurrence. However, doubling the dosage of statin drugs did not increase the achievement rate of LDL-C target or provide additional clinical benefits, but significantly increased the risk of adverse reactions. Statins and ezetimibe work through different mechanisms and the combined use of statins and ezetimibe significantly improves outcomes with comparable safety profiles. We tested the hypothesis that moderate-intensity statin with ezetimibe may offer advantages over the conventional high-intensity statin regimen in terms of efficacy and safety. METHODS: We conducted a randomized controlled trial. Eligible participants were aged 18 years or older with acute ischemic cerebrovascular disease. We randomly assigned (1:1) participants within the acute phase of ischemic stroke, i.e., within 1 week after the onset of mild ischemic stroke (NIHSS score ≤ 5), within 1 month for severe cases (NIHSS score ≥ 16), and within 2 weeks for the rest, as well as patients with TIA within 1 week of symptom onset, to receive either moderate-intensity statin with ezetimibe (either 10-20 mg atorvastatin calcium tablets plus a 10 mg ezetimibe tablet, or 5-10 mg rosuvastatin calcium tablets once per day plus a 10 mg ezetimibe tablet once per day) or high-intensity statin (40 mg atorvastatin calcium tablets or 20 mg rosuvastatin calcium tablets once per day) for 3 months. Randomization was performed using a random number table method. The primary efficacy outcome was the level and achievement rate of LDL-C after 3 months of treatment, specifically LDL-C ≤ 1.8 mmol/L or a reduction in LDL-C ≥ 50 %. The secondary outcome was the incidence of new stroke or transient ischemic attack (TIA) within 3 months. The safety outcome was liver and renal function tests, and the occurrence of statin-related muscle events within 3 months. FINDINGS: This trial took place between March 15, 2022, and March 7, 2023. Among 382 patients screened, 150 patients were randomly assigned to receive either medium-intensity statins with ezetimibe (n = 75) or high-intensity statins (n = 75). Median age was 60.0 years (IQR 52.75-70.25); 49 (36.6 %) were women and 85 (63.4 %) were men. The target achievement of LDL-C at 3 months occurred in 62 (89.86 %) of 69 patients in the medium-intensity statin with ezetimibe group and 46 (70.77 %) of 65 patients in the high-intensity statin group (P=0.005, OR=0.273, 95 % CI: 0.106, 0.705). The reduction magnitude of LDL-C in moderate-intensity statin with ezetimibe group was significantly higher (-56.540 % vs -47.995 %, P=0.001). Moderate-intensity statin with ezetimibe group showing a trend of a greater reduction in LDL-C absolute value than high-intensity statin group but without statistical significance (-1.77±0.90 vs -1.50±0.89, P=0.077). New AIS or TIA within 3 months, liver and renal function tests, and the occurrence of statin-related muscle events within 3 months were also statistically insignificant. Multivariate logistic regression analysis showed that both gender and lipid-lowering regimen as independent risk factors influencing the rate of LDL-C achievement in individuals diagnosed with acute ischemic cerebrovascular disease, but only lipid-lowering regimen had predictive value. INTERPRETATION: Compared to guideline-recommended high-intensity statin therapy, moderate-intensity statin with ezetimibe further improved the achievement rate of LDL-C in patients with acute ischemic cerebrovascular disease, with a higher reduction magnitude in LDL-C. In terms of safety, there was no significant difference between the two regimens, suggesting that moderate-intensity statin with ezetimibe can also be considered as an initial treatment option for patients with acute ischemic cerebrovascular disease.


Assuntos
Anticolesterolemiantes , Inibidores de Hidroximetilglutaril-CoA Redutases , Ataque Isquêmico Transitório , AVC Isquêmico , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ezetimiba/efeitos adversos , Rosuvastatina Cálcica , Atorvastatina , Anticolesterolemiantes/efeitos adversos , LDL-Colesterol , Ataque Isquêmico Transitório/diagnóstico , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/induzido quimicamente , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , AVC Isquêmico/tratamento farmacológico , Comprimidos , Quimioterapia Combinada , Resultado do Tratamento
16.
Environ Sci Technol ; 58(14): 6083-6092, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547129

RESUMO

Despite significant advances in understanding the general health impacts of air pollution, the toxic effects of air pollution on cells in the human respiratory tract are still elusive. A robust, biologically relevant in vitro model for recapitulating the physiological response of the human airway is needed to obtain a thorough understanding of the molecular mechanisms of air pollutants. In this study, by using 1-nitropyrene (1-NP) as a proof-of-concept, we demonstrate the effectiveness and reliability of evaluating environmental pollutants in physiologically active human airway organoids. Multimodal imaging tools, including live cell imaging, fluorescence microscopy, and MALDI-mass spectrometry imaging (MSI), were implemented to evaluate the cytotoxicity of 1-NP for airway organoids. In addition, lipidomic alterations upon 1-NP treatment were quantitatively analyzed by nontargeted lipidomics. 1-NP exposure was found to be associated with the overproduction of reactive oxygen species (ROS), and dysregulation of lipid pathways, including the SM-Cer conversion, as well as cardiolipin in our organoids. Compared with that of cell lines, a higher tolerance of 1-NP toxicity was observed in the human airway organoids, which might reflect a more physiologically relevant response in the native airway epithelium. Collectively, we have established a novel system for evaluating and investigating molecular mechanisms of environmental pollutants in the human airways via the combinatory use of human airway organoids, multimodal imaging analysis, and MS-based analyses.


Assuntos
Poluentes Atmosféricos , Pirenos , Sistema Respiratório , Humanos , Reprodutibilidade dos Testes , Organoides , Imagem Multimodal
17.
Sci Rep ; 14(1): 5183, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431730

RESUMO

Acute myocardial infarction (AMI), a critical manifestation of coronary heart disease, presents a complex and not entirely understood etiology. This study investigates the potential role of immune infiltration and endothelial-mesenchymal transition (EndoMT) in AMI pathogenesis. We conducted an analysis of the GSE24519 and MSigDB datasets to identify differentially expressed genes associated with the TGF-ß signaling pathway (DE-TSRGs) and carried out a functional enrichment analysis. Additionally, we evaluated immune infiltration in AMI and its possible link to myocardial fibrosis. Key genes were identified using machine learning and LASSO logistic regression. The expression of MEOX1 in the ventricular muscles and endothelial cells of Sprague-Dawley rats was assessed through RT-qPCR, immunohistochemical and immunofluorescence assays, and the effect of MEOX1 overexpression on EndoMT was investigated. Our study identified five DE-TSRGs, among which MEOX1, SMURF1, and SPTBN1 exhibited the most significant associations with AMI. Notably, we detected substantial immune infiltration in AMI specimens, with a marked increase in neutrophils and macrophages. MEOX1 demonstrated consistent expression patterns in rat ventricular muscle tissue and endothelial cells, and its overexpression induced EndoMT. Our findings suggest that the TGF-ß signaling pathway may contribute to AMI progression by activating the immune response. MEOX1, linked to the TGF-ß signaling pathway, appears to facilitate myocardial fibrosis via EndoMT following AMI. These novel insights into the mechanisms of AMI pathogenesis could offer promising therapeutic targets for intervention.


Assuntos
Infarto do Miocárdio , Fator de Crescimento Transformador beta , Ratos , Animais , Fator de Crescimento Transformador beta/metabolismo , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Infarto do Miocárdio/patologia , Transdução de Sinais/genética , Fibrose
18.
BMC Neurol ; 24(1): 81, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429754

RESUMO

BACKGROUND: Ischemic stroke and transient ischemic attack (TIA) are the most prevalent cerebrovascular diseases. The conventional antiplatelet drugs are associated with an inherent bleeding risk, while indobufen is a new antiplatelet drug and has the similar mechanism of antiplatelet aggregation as aspirin with more safety profile. However, there have been no studies evaluating the combination therapy of indobufen and clopidogrel for antiplatelet therapy in cerebrovascular diseases. OBJECTIVE: The CARMIA study aims to investigate the effectiveness and safety of a new dual antiplatelet therapy consisting of indobufen and clopidogrel comparing with the conventional dual antiplatelet therapy consisting of aspirin and clopidogrel in patients with minor ischemic stroke or high-risk TIA. METHODS: An open-label randomized controlled clinical trial was conducted at a clinical center. We randomly assigned patients who had experienced a minor stroke or transient ischemic attack (TIA) within 72 h of onset, or within 1 month if they had intracranial stenosis (IS), to receive either indobufen 100 mg twice daily or aspirin 100 mg once daily for 21 days. For patients with IS, the treatment duration was extended to 3 months. All patients received a loading dose of 300 mg clopidogrel orally on the first day, followed by 75 mg once daily from the second day to 1 year. We collected prospective data using paper-based case report forms, and followed up on enrolled patients was conducted to assess the incidence of recurrent ischemic stroke or TIA, mRS score, NIHSS (National Institutes of Health Stroke Scale) score, and any bleeding events occurring within 3 month after onset. RESULTS: We enrolled 202 patients diagnosed with ischemic stroke or transient ischemic attack. After applying the criteria, 182 patients were eligible for data analysis. Endpoint events (recurrence of ischemic stroke/TIA, myocardial infarction, or death) were observed in 6 patients (6.5%) receiving aspirin and clopidogrel, including 4 (4.3%) with stroke recurrence, 1 (1.1%) with TIA recurrence, and 1 (1%) with death. In contrast, no endpoint events were reported in the indobufen and clopidogrel group (P = 0.029). The group of patients receiving indobufen and clopidogrel exhibited significantly lower modified Rankin Scale (mRS) score. (scores range from 0 to 6, with higher scores indicating more severe disability) compared to the aspirin and clopidogrel group (common odds ratio 3.629, 95% CI 1.874-7.036, P < 0.0001). Although the improvement rate of NIHSS score in the indobufen and clopidogrel group was higher than that in the aspirin and clopidogrel group, the difference was not statistically significant (P > 0.05). Bleeding events were observed in 8 patients (8.6%) receiving aspirin and clopidogrel, including 4 (4.3%) with skin bleeding, 2 (2.2%) with gingival bleeding, 1 (1.1%) with gastrointestinal bleeding, and 1 (1.1%) with urinary system bleeding. On the other hand, only 1 patient (1.1%) in the indobufen and clopidogrel group experienced skin bleeding (P = 0.035). CONCLUSION: The combination of indobufen and clopidogrel has shown non-inferior and potentially superior effectiveness and safety compared to aspirin combined with clopidogrel in patients with minor ischemic stroke and high-risk TIA in the CARMIA study (registered under chictr.org.cn with registration number ChiCTR2100043087 in 01/02/2021).


Assuntos
Ataque Isquêmico Transitório , AVC Isquêmico , Isoindóis , Fenilbutiratos , Acidente Vascular Cerebral , Humanos , Aspirina , Clopidogrel/uso terapêutico , Inibidores da Agregação Plaquetária/efeitos adversos , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/epidemiologia , AVC Isquêmico/tratamento farmacológico , Estudos Prospectivos , Acidente Vascular Cerebral/tratamento farmacológico , Hemorragia/induzido quimicamente , Quimioterapia Combinada , Resultado do Tratamento
19.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475206

RESUMO

A greenhouse gas sensor has been developed to simultaneously detect multiple gas species within a hollow-core photonic bandgap fiber (HC-PBF) structure entirely composed of fibers. To enhance sensitivity, the gas cell consists of HC-PBF enclosed between two single-mode fibers fused with a reflective end surface to double the absorption length. The incorporation of side holes for gas diffusion allows for analysis of the relationship between gas diffusion speed, number of drilled side holes, and energy loss. As the number of drilled holes increases, the response time decreases to less than 3 min at the expense of energy loss. Gas experiments demonstrated detection limits of 0.1 ppm for methane and 2 ppm for carbon dioxide, with an average time of 50 s. In-situ testing conducted in rice fields validates the effectiveness of the developed gas detection system using HC-PBF cells, establishing all-fiber sensors with high sensitivity and rapid response.

20.
Langmuir ; 40(16): 8393-8399, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38442040

RESUMO

Surface-tethered poly(ionic liquid) brushes have attracted considerable attention in widespread fields, from bioengineering to marine antifouling. However, their applications have been constrained due to the poor polymerization efficiency and sophisticated operation process. In this work, we efficiently synthesized the poly(ionic liquid) brushes with unparalleled speed (up to 98 nm h-1) through Fe0-mediated surface-initiated atom transfer radical polymerization (Fe0 SI-ATRP) while consuming only microliter of monomer solution under ambient conditions. We also demonstrated that poly(ionic liquid) brushes with gradient thickness and wettability were easily accessible by regulating the distance between the opposite plates of Fe0 SI-ATRP. Moreover, the resultant poly(ionic liquid) brushes presented excellent antibacterial activities against Escherichia coli (99.2%) and Bacillus subtilis (88.1%) after 24 h and low attachment for proteins and marine algae (≤5%) for over 2 weeks. This research provided pathways to the facile and controllable fabrication of poly(ionic liquid) materials for marine antifouling applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...